Low-level Shader Optimization for
Next-Gen and DX11

Emil Persson
Head of Research, Avalanche Studios

(N

GOC

o Introduction
B [ast year's talk

- "Low-level Thinking in High-level Shading Languages”
- Covered the basic shader features set
« Float ALU ops
« New since last year
- Next-gen consoles

« GCN-based GPUs
- DX11 feature set mainstream

. 70% on Steam have DX11 GPUs [1] A GOC

o ¥ oY

PNy, o e
ain lessons from last year
* « You get what you write!

- Don't rely on compiler “optimizing” for you
- Compiler can't change operation semantics

. Write code in MAD-form

o
" ..

« Separate scalar and vector work

- Also look inside functions
. Even built-in functions!
- Add parenthesis to parallelize work for VLIW

A GBC

Refertoslidedl e c k f r o m |-leweltThinkieganrHighfl elveeww Shadi ng La
for details on these optimizations. This presentation will assume that you already know what

t hi ngs Ifiokremod MieDa n s .

..,._;::}‘f..t il More lessons
¥ .. Put abs() and negation on input, saturate() on
output

o rcp(), rsqrt(), sqrt(), exp2(), log2(), sin(), cos()
map to HW

- Watch out for inverse trigonometry!

. Low-level and High-level optimizations are not
mutually exclusive!

- Do both!

a GOC

DS] -
S
ps .

%A Jook at modern hardware

P =, 7-8 years from last-gen to next-gen

- Lots of things have changed

- Old assumptions don't necessarily hold anymore

« Guess the instruction count!

Backin DX9 eraa cubemap lookup was still a single sample instructiod,the same was

true for projective textures (tex2Dproj). In DX10 direct support for projective textures was
removed, with the expectation that shaders that need projective texturing will simply do the
division by w manually. This reflected the fact that no hardware did the division by w in the
texture unit anymore, so there was no need to pretend it did. The cost of this fixed function
hardware could no longer be motivated when we have so much ALU units that would be
perfectly capable of doing this math. The situation for cubemaps is the same. Obviously we
still need fast sampling, so cubemaps are still a first class citizen in the API and will likely
remain that way; however, the coordinate normalization is not something that we want to
spend an awful lot of transistors on when those transistors could rather be used to add more
general ALU cores instead. Consequently, this is handled by the ALUs thes&taiE3D
bytecodestill treats sampling a cubemap as a simple sample instruction. However, it may
surprise you what this expands to in native hardware instructions.

« 15 VALU
- 1 transcendental
« 6 SALU
. 1 IMG
e 1 EXP

(v5)
, 0x3fco0000

tO:Bj: té:9j: [4:11], s[12:15]
[2:3]

(@)

This is whathe actual shader looks like in the end. There is a set of different types of
instructions here, vector ALU instruction (VALU) which are your typical math instructions
and operate on wide SIMD vectors across all threads/pixels/vertices, and scalar instructions
(SALU) that operate on things that are common for all threads. More on these instructions
later in this presentation. There is also an image instruction (IMG) that does the actual
sampling here, and finally an export instruction (EXP) that writes out the final output data,
which in the case of a pixel shader is what lands in your framebuffer.

B Fixed function moving to ALU

Hardware evolution

- Interpolators

- Vertex fetch

- Export conversion

- Projection/Cubemap math

- Gradients
. Was ALU, became TEX, back to ALU (as swizzle + sub)

A GBC

The general trend is that more and more fixed function omtige over to the shader cores.

This makes a lot of sense from a transistor budget point of view and is something that has
been going on for a long time. Interpolators became ALU instructions with DX11 hardware.
Vertex fetch has been done by the shader for a long time. Even Xbox360 did this. Export
conversion is now handled by the ALUs since GCN. Projection/cubemap math since DX10.
Gradients have moved a bit back and forth. Since gradient are needed by the texture units
anyway, it made sense in the past to let them handle it; however, now that GCN has a
generic | ane swizzle, the ALUs has all the
ALUs again.

A side effect of this trend is that things that previously were more or less for free could now
come at a moderate cost in terms of ALU instructions. For instance, for shaders with a
sufficiently large number of instructions / interpolator ratio interpolators used to be free,
although short shaders or shaders with many interpolators could easily become interpolator
bound. On DX11 hardware where interpolation is an ALU instruction, you basically pay for

the interpolation cost. Previously interpolabmund shaders could now became Abtund

and | ikely run substantially fast-bound yowher e
would now see a slowdown due to the additional interpolation cost.

. Hardware evolution
I« Most of everything is backed by memory

- No constant registers
- Textures, sampler-states, buffers
- Unlimited resources

- "“Stateless compute”

A GBC

In the past the hardware had a lot of global device state. Things sat is registers that the
hardware units read. This is not the case anymore. Most things are backed by memory and
then read by the hardware whenever it needs it. This is not as scary as it may sound, there
are obviously caches-ibetween keeping the bandwidth cost to a minimum, and values may
be lying around in local registers for whatever hardware unit needs it after it has been loaded
from memory. Constants obviously moved to memory with the introduction of constant
buffers; however, these days things like texture descriptors and satgiey are just a

piece of data and behave just like constants. On GCN architecture you could technically put
a bunch of texture descriptors and samptates in your constant buffer, provided of course

that we have the proper APl and shader infrastructure to do things that way.

For historical reasons APls have assigned
hardware anymore. Instead drivers assemble the set of active slots and create a list of those
in memory and just passes the pointer to the shader.

The main implication of this is that there is no longer any particular limitation to the number
of resources we can access from a shader. Just provide a long enough array and the shader
can grab anything from anywhere as it pleases.

The other implication is that access to resources also comes at a cost for grabbing the
backing data of samplstates and texture descriptors. This cost can mostly be hidden on
GCN since those are SALU instructions that run independently of VALU, but it is worth
knowing that resource descriptors are loaded explicitly by the shader using actual shader
instructions.

It is worth noting that compute units in GCN architecture are completely stateless. This
means that once a compute shader is up and running, it has all data in its local registers
and no longer depends on any global device state (other than data in memory). This means
that it is perfectly possible for compute units to run in parallel with different shaders,
completely asynchronously, and in parallel with the graphics pipeline. However, the
graphics pipeline itself still relies on some global state, and thus it is currently not possible
to run two different graphics pipelines in parallel. It would not surprise me if this would
change in future hardware.

NULL shader
} . AMD DX10 hardware

Float4 in(float4

00 EXP_DONE: PIXe,

An interesting exercis&hen trying to understand the basic parameters to a shader is trying
to write a ANULLO shader, or a shader that
final export. On AMDOGs DX10 | evel har dwar e
returning an interpolator directly. On DX10 level hardware, interpolators came preloaded

into registers, so we only need to output that register and we are done. One downside of this
approach is that if you have a lot of interpolators the shader will by necessity also consume a
lot of registers, just to provide the shader with its inputs. This can negatively impact latency
hiding and ultimately performance, which is another reason to go away from this approach.

OnDX11 level hardware the situation is different. On all AMD DX11 hardware the
interpolation is done manually by the shader. Left side is an HD5000 series chip, right side
the results on the GCN architecture. On GCN we also see the addition of export conversion
to pack the result into FP16 format.

