




Refer to slidedeck from last year (òLow-level Thinking in High-level Shading Languagesò) 

for details on these optimizations. This presentation will assume that you already know what 

things like òMAD-formò means.





Backin DX9 era a cubemap lookup was still a single sample instruction,and the same was 

true for projective textures (tex2Dproj). In DX10 direct support for projective textures was 

removed, with the expectation that shaders that need projective texturing will simply do the 

division by w manually. This reflected the fact that no hardware did the division by w in the 

texture unit anymore, so there was no need to pretend it did. The cost of this fixed function 

hardware could no longer be motivated when we have so much ALU units that would be 

perfectly capable of doing this math. The situation for cubemaps is the same. Obviously we 

still need fast sampling, so cubemaps are still a first class citizen in the API and will likely 

remain that way; however, the coordinate normalization is not something that we want to 

spend an awful lot of transistors on when those transistors could rather be used to add more 

general ALU cores instead. Consequently, this is handled by the ALUs these days. The D3D 

bytecodestill treats sampling a cubemap as a simple sample instruction. However, it may 

surprise you what this expands to in native hardware instructions.



This is whatthe actual shader looks like in the end. There is a set of different types of 

instructions here, vector ALU instruction (VALU) which are your typical math instructions 

and operate on wide SIMD vectors across all threads/pixels/vertices, and scalar instructions 

(SALU) that operate on things that are common for all threads. More on these instructions 

later in this presentation. There is also an image instruction (IMG) that does the actual 

sampling here, and finally an export instruction (EXP) that writes out the final output data, 

which in the case of a pixel shader is what lands in your framebuffer.



The general trend is that more and more fixed function unitsmove over to the shader cores. 

This makes a lot of sense from a transistor budget point of view and is something that has 

been going on for a long time. Interpolators became ALU instructions with DX11 hardware. 

Vertex fetch has been done by the shader for a long time. Even Xbox360 did this. Export 

conversion is now handled by the ALUs since GCN. Projection/cubemap math since DX10. 

Gradients have moved a bit back and forth. Since gradient are needed by the texture units 

anyway, it made sense in the past to let them handle it; however, now that GCN has a 

generic lane swizzle, the ALUs has all the tools to do the work itself, so now itôs done in the 

ALUs again.

A side effect of this trend is that things that previously were more or less for free could now 

come at a moderate cost in terms of ALU instructions. For instance, for shaders with a 

sufficiently large number of instructions / interpolator ratio interpolators used to be free, 

although short shaders or shaders with many interpolators could easily become interpolator-

bound. On DX11 hardware where interpolation is an ALU instruction, you basically pay for 

the interpolation cost. Previously interpolator-bound shaders could now became ALU-bound 

and likely run substantially faster, whereas if you werenôt previously interpolator-bound, you 

would now see a slowdown due to the additional interpolation cost.



In the past the hardware had a lot of global device state. Things sat is registers that the 

hardware units read. This is not the case anymore. Most things are backed by memory and 

then read by the hardware whenever it needs it. This is not as scary as it may sound, there 

are obviously caches in-between keeping the bandwidth cost to a minimum, and values may 

be lying around in local registers for whatever hardware unit needs it after it has been loaded 

from memory. Constants obviously moved to memory with the introduction of constant 

buffers; however, these days things like texture descriptors and sampler-states are just a 

piece of data and behave just like constants. On GCN architecture you could technically put 

a bunch of texture descriptors and sampler-states in your constant buffer, provided of course 

that we have the proper API and shader infrastructure to do things that way.

For historical reasons APIs have assigned resources to ñslotsò. These do not exist in 

hardware anymore. Instead drivers assemble the set of active slots and create a list of those 

in memory and just passes the pointer to the shader. 

The main implication of this is that there is no longer any particular limitation to the number 

of resources we can access from a shader. Just provide a long enough array and the shader 

can grab anything from anywhere as it pleases.

The other implication is that access to resources also comes at a cost for grabbing the 

backing data of sampler-states and texture descriptors. This cost can mostly be hidden on 

GCN since those are SALU instructions that run independently of VALU, but it is worth 

knowing that resource descriptors are loaded explicitly by the shader using actual shader 

instructions.



It is worth noting that compute units in GCN architecture are completely stateless. This 

means that once a compute shader is up and running, it has all data in its local registers 

and no longer depends on any global device state (other than data in memory). This means 

that it is perfectly possible for compute units to run in parallel with different shaders, 

completely asynchronously, and in parallel with the graphics pipeline. However, the 

graphics pipeline itself still relies on some global state, and thus it is currently not possible 

to run two different graphics pipelines in parallel. It would not surprise me if this would 

change in future hardware.



An interesting exercisewhen trying to understand the basic parameters to a shader is trying 

to write a ñNULLò shader, or a shader that outputs no actual instructions other than say a 

final export. On AMDôs DX10 level hardware something like this would do. We are simply 

returning an interpolator directly. On DX10 level hardware, interpolators came preloaded 

into registers, so we only need to output that register and we are done. One downside of this 

approach is that if you have a lot of interpolators the shader will by necessity also consume a 

lot of registers, just to provide the shader with its inputs. This can negatively impact latency 

hiding and ultimately performance, which is another reason to go away from this approach.



OnDX11 level hardware the situation is different. On all AMD DX11 hardware the 

interpolation is done manually by the shader. Left side is an HD5000 series chip, right side 

the results on the GCN architecture. On GCN we also see the addition of export conversion 

to pack the result into FP16 format.


